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Two prescriptions often used to find Hermitian operators corresponding to 
classical quantities can be removed. Components of momentum are of three 
types, linear momentum P~q), canonical momentum P(q)k, and generalized 
momentum pk. Using metrical geometry their mutual relations are established. 
The operators P<q) and P(o)k are given by substituting quantum commutation 
brackets for classical Poisson brackets. The relations among classical quantities 
are divided into two types according to whether they have physical meaning. 
Those which have physical meaning go over into the corresponding operator 
relations. 

1. I N T R O D U C T I O N  

I f  G(q,p(q)) is a scalar  funct ion o f  canonical  variables q(ql, q2, q3) 
and  P(q)(P(q)l, P(q)2, P(q)3), it is well known  that  G(q, p(q)) obeys the classical 
dynamica l  equa t ion  

G( q, p(q)) = { G( q, p(q)), H ( q, p(q))} (1) 

where H(q,p(q)) is the Hami l ton ian  of~the classical system, and 

{G(q,p(q)),H(q,p(q))}=(O~i OH OH O G )  
Op(q)i Oq i O~(q)i 

is the Poisson bracket  (abbreviated as PB) for G(q,p(q)) and H(q,p(q)). 
Further ,  the quan tum  equat ion  o f  mot ion  cor responding  to a given classical 
system can be found  by  substituting the commuta to r  bracket  divided by ih 
for  the PB, 

G = { G ,  H}--> G = ~  [G , /41  (2a) 

1Xiangtan University. 
2Hainan Teachers College. 

909 
0020-7748/90/0900-0909506.00/0 �9 1990 Plenum Publishing Corporation 



910 Hsang et  al .  

P(q)k ~ P(q)k = h 0 (2b) 
i Oq k 

where fi(q)k, G, a n d / 4  are operators corresponding to the classical quantities 
P(q)k, G(  q, p(q)), and H ( q, p(q)), respectively, and 

[d, #]  = ( d # -  #d) 

However, it was found that the quantization program of equations (2a) and 
(2b) is not always valid in an arbitrarily chosen coordinate system. Hence, 
Schiff (1968) pointed out the following two prescriptions: 

"First, the coordinates and momenta must be expressed in Cartesian 
coordinates. Second, ambiguities in the order of  noncommuting factors are 
usually resolved by taking a symmetric average of  the various possible 
orders." 

These two prescriptions will simply be called the "(x)-condit ion" and 
the "symmetrization procedure," respectively. 

Indeed, it can be seen why the (x)-condition seems to be a reasonable 
restriction when we carry out the substitution from classical quantities to 
quantum operators in spherical polar coordinates. Suppose that the Car- 
tesian coordinates (x) and the rectangular coordinates (q) are static relative 
to each other without loss of  generality, let us consider a single particle 
moving in a conservative potential energy field U(x) .  Evidently, U ( x ) =  
U(q) .  Then the Lagrangian L(x, 2) of the single particle is 

/x L(x, .~) = -~ [(.~1)1 ..~_ (~2)2 .~.. (.~3)2] _ U(x)  (3a) 

/z 
L(q, q) =~- ( ~2+ r202+ r2 sin2 0~ b2) - U(q)  (3b) 

and L(x,  ~) = L(q, dl). In accordance with the definitions of  the canonical 
momentum and Hamiltonian, we have 

OL 
P(x)i - 0~i (i = 1, 2, 3) (4a) 

aL aL 2 �9 
P(s)r = c9~ = #f '  P(s)o - - ~  = t zr 0 

aL 
P~)* - a~k - /zr2  sin2 o~k 

(4b) 
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and 

1 2 2 2 
= 2--~ ( P ( x ) l  + P(x)2 q- P(x)3) + U(X) (5a )  

H(q,  p(q)) = P(~)kgl k - L(q, q) 

= 2  (i2+ r202+ r2 sin2 0~b2) + U(q)  (5b) 

and H ( x ,  P(x)) = H(q ,  P(o)). Obviously, equation (5b) can be expressed in 
terms of canonical momenta P(s)k = OL/O0 g and generalized momenta P~ = 
i~gl k, respectively. We have 

H(q,p(s))=~--~ P~)r+ P~,)O4r2sin2oP(,)~ +U(r,O,~p) (6a) 

1 2 H(q ,  Ps) = - ~  (P,r + r2p2o + r2 s in2 0 P~r + U(r, O, ~p) (6b) 

Now, with the help of the quantization procedure of equation (2b), 
the Hamiltonian functions of equations (6a) and (6b) will be replaced by 
corresponding operators, respectively. 

In the (x)-system, the canonical momentum operators of equation (2b) 
are 

P(~)i = i Ox ~' i = 1, 2, 3 

Substituting/3(,)~ into equation (Sa) gives 

H(x,!~(~)) = --27~ + 0 - ~  + + U(x) (7) 

In the (s)-system, i.e., spherical coordinates, if the operator of equation 
(2b) denotes operators of canonical momenta, i.e., 

P(~)k h O i Oq ~' q = r, or O, or 

then substituting/3(s)k into equation (6a) gives 

,, ,, ^ h 2 ~ 0 2 + 1  a 2 1 0 2 '~ 
H(q'P('))=-T--'Or2z/x k r 2 - ~ q r Z s i n 2 O ~ - ~ i / + U ( r , O ,  4)) (8a) 
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If  the operator of  equation (2b) denotes operators of generalized 
momentum, i.e., 

^k h 0 Ps=7~qk, q=r, or 0, or ~o 

then substituting /3k into equation (6b) gives 

^ ^ * h ( 02 O 2 02 ) 
H(q,p,)=--~-~ -~-fir2+ra-~+r2sin20-~52 + U ( r ,  0,~o) (8b) 

On the other hand, it is well known that the correct Hamiltonian 
operator in the (s)-system can be derived from /40~,/$(.)) given in the 
(x)-system by the use of  a compound differential, that is, 

H(q,p(q~)=--~ -fi-~r\-~r/ r~sinO00 0-0 
1 02 ] 

-t r2 sin2 0 0~ -2 + U(r, O, q~) (9) 

We see that neither equation (Sa) nor (8b) is the correct Hamiltonian 
operator in a spherical coordinate system. It seems as if the coordinates 
and momenta are only expressible in Cartesian coordinates. The transition 
procedures given in equations (2a) and (2b) can be considered reliable. 

When the transformation laws of components of  canonical momenta 
under transformation of  the coordinate system are taken over to the corre- 
sponding operators, it seems as if the symmetrization procedure also is 
reasonable. It will be shown later that the transformation law of the canonical 
momenta is 

oqk Oq-----~k (lOa) 
P(x) i  --  (gxi P(q)k  = P(q)k  t~.,~i 

The order of classical quantities P~q~k and Oqk/ax i is commutable,  but  the 
order of  the operators /3(q)k and Oqk/Ox i is not. For P(x)i on the left side 
of  equation (10a) to go over into a Hermitian operator /3(x)i, the sym- 
metrization procedure needs to be applied to the right side of  (10a) before 
the classical quantity is replaced by the corresponding quantum operator; 
that is, 

1 (Oqk (q~k ~-7-x~ ) (lOb) p(x)i=? \-~Z p(q)k + p Oqk 

Only then can we carry out the transition from classical quantities to 
quantum operators. For clarity, let both sides of  the operator equality 
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corresponding to (lOb) act on an arbitrary ket vector. We thus obtain 

e(x),[> = P(q k + P(q k Tx') 

The operators in the parentheses have been composed into a Hermitian 
operator. Thus, it seems as if the symmetrization procedure originating 
in the Hermitian requirement is also reasonable. After performing the 
operation, since the ket vector is arbitrary, we have 

A = ( o q k , ,  fi O---~'-(Oqk~ (11) 
e(x), P<q)k+  oq \-d T / / 

On the other hand, the correct transformation law for momentum 
operators in the (q)-system can be derived by the use of the rule of the 
compound differential, 

,, h O h Oq k O Oqk~, 
P(,,)i = T Ox' = T Ox --7 Oq k - Ox' P(q)k (12) 

The right side of equation (11) gives rise to some additional terms compared 
to equation (12). Evidently, the transformation expression between the 
coordinates of the (q)-system and the (x)-system is q k =  (a~x t+  bk), and 
a~, b k are Constant, i.e., the (q)-system must also be a Cartesian coordinate 
system or the additional terms will not vanish. It seems as if the symmetriz- 
ation procedure must be performed in a Cartesian coordinate system. 

The above arguments can be illustrated by the process in Figure 1. If 
we perform steps A and D in order, then we arrive at the correct operator 
(~'(~,/3(o 7) in the (q)-system, for example, the right-hand sides of equations 
(9) and (12). If the steps C and B are performed successively, though we 

c& 

o~ 

S tep C 
Q~.X, p ) "  ~ Qkq, P ) 

i'rensformation-of Coerdin~tes 

l 

4~ 

N 
o) 

~ ~(q, P 
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T rensfarmation of Coordinetes 
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A A A ~ 

may produce an operator Q(q, p<q)) m the (q)-system [such as the right-hand 
sides of (8a), (Sb), and (11)], this operator Q(~,/~<q)) is not always equal 
to the correct operator Q'(q, p<q)). 

In order to seek a general quantization procedure without the restric- 
tions of the (x)-condition and the symmetrization procedure, the coordinate 
systems have been examined in different ways, such as the method of 
covariant derivative or the method of infinitesimal contact transformation 
with classical analogy. In this way Merzbacher (1970) came to the following 
conclusion: the types of coordinate systems in which the canonical quanfiz- 
ation program is valid are those which can be obtained from a Cartesian 
coordinate system by continuous succession of infinitesimal contact trans- 
formations (it may be proved that the quantization program in the PB 
formalism is similarly valid). Because the classical analogy might be not 
accurate, we tried to solve the same problem with the help of the infinitesimal 
contact transformations in a first-order approximation (unpublished work) 
and found that a coordinate condition under which equations (2a) and (2b) 
are valid is 

; x  

[q, O]=0 

(characterizing so-called "G-type coordinates") where G is a Hermitian 
operator corresponding to the generatrix function G(q, p<q)) of infinitesimal 
contact transformations. We were only able to replace the (x)-condition by 
the G-type coordinates, while the symmetrization procedure remained 
unchanged. 

The following discussion shows that, provided we apply exactly the 
metric analytical method to the transition from classical to quantum systems, 
not only can both the (x)-condition and the symmetrization procedure be 
entirely removed, but also only equation (2a) is necessary. 

2. METRIC RELATION OF THREE TYPES OF 
CLASSICAL MOMENTA 

Suppose that the two arbitrary systems of orthogonal coordinates (qk) 
and (q,r) (k, r = 1, 2, 3) are static relative to each other and that there exist 
single-valued invertible transformation relations between them, 

qk = qk(q,,, q,2, q,3) = (q,), k = 1, 2, 3 (13a) 

q,r= q,r(q~, qe, q3) = q,(q), r = 1, 2, 3 (13b) 

where the functions qk(q,) and q,r(q) are assumed to possess continuous 
partial derivatives to the needed order. In the orthogonal coordinate systems 
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(q) and (q'), the metric components gkt and g',s satisfy the conditions 

gkl ----- 0 for k • 1 
(14) 

g'rs = 0 for r ~ s  

Their contravariant components for the given point q in space are 
defined as the inverses of  go and g'r,, i.e., 

g0g Jl= 81i and g'rsg 'st= r r (15) 

Using the metric components gkt and g'r~, the square of linear elements 
in 3-dimensional space d s  2 c a n  be written as 

ds~q) = dr<q>, d r ( q )  = go dq i dq j (16a) 

ds~q,) = dr(q,) �9 dr<q,) = g'rs dq 'r dq '~ (16b) 

The interval between two arbitrary points in space is invariant, i.e., ds~o > = 
ds~q,>. Using equations (13a), (13b), and (14), we have the equality 

Oq' aq j dq,r dq,~ (17) d s 2  "=" go dq ~ d q  j = gO oq,r 

Comparing equations (16b) and (17), we obtain 

Oq i Oq j Oq 'r aq ,~ 
' - = ' . (18) grs - -  go o q t r  O q , S ,  go gr~ Oq' Oq j 

If  we replace the (q')-system with the (x)-system, then ' - g~ - ~rs (Kronecker 
delta) and by equations (18) we have 

gk, = t$~ Ox----s OxS- E-OX~ Ox~ (19a) 
Oq k Oq t -  ~ aq k Oq t 

Oqk O q t - 1  o r  ~ gkk (Oqk )  
gkt Ox ~ Ox ~ \-~-xr ] = 1 (19b) 

Let the {eqj} = (eqa, %2, eq3) and {e~r} = (exl, ex2, ex3) be orthogonal unit 
vectors along the corresponding curve of  coordinates which passes through 
a given point q or x in space. Then we have 

e q i  . e q j  = t$ O or e x r  " ex~ = 6~s (20a) 

The corresponding {e~} and {e;} are defined as 

i O r rs eq = g eqj or e~ = 6 e~, (20b) 

Using equation (15), we get 

gijeJq = eqi and gkieqi = e k (20c) 
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The displacement dr may be written as 

dr<q> = eqj  dr{q> = gjke~ dr~q> - k --  eq dr<q>k 

dr<x> = ex, dr<r> = ~rs e s  dr<~> = e~ dr<x>s 

where 

Hence 

dr<q>k = &k dr{q>, dr<x>, = 8,s dr<~> 

(21) 

(22) 

ds 2 = dr<q>" dr<q> = (eqi" eqj) dr~q> dr{q> 

= 8q Or{q> Or{q> aqk 8q~" dq k dq I = gkt dq k dq I (23a) 

ds = = dr<,>, dr<x> = (exr" e=) dr<r>, dr<~> 

= 8rs dr<r>, dr~<x> = 8rs dx r dx  s (23b) 

Now, using equation (14), we can write 

dr{q> = ~ i 2  dq j, dr<r> = dx r (24) 

gj jdq '  is the j th  component of dr relative to the (q)-system and has 
dimension of  length, while the dimension of dq j is not always length. Using 
equations (22) and (24), we can write down 

d r ( q >  = eqj  dr{q> = e q j ~  d q  j 

= e~ dr<q>j = r  dv b (25a) 

dr<x> = ex, dr<r> = exr dx r 

= e~ dr<x>r = e~ dxr (25b) 

As both {qJ} and {x'} are static relative to each other, we have dr<q> = 
dr<x>, i.e., 

8X r 
e v ~  dq j = ex, dx r = e x r - ~  dq j 

r 8Xr 
e ~  dab = e~ dx, = ex - ~  dab (26a) 

exr dx  ~ = eqjv/'~jj dq j = e q j ~  Ox"--; dx" 

erx dx, = e ~ g  jj dab = e ~  -7 ~ dxr (26b) 
OXr 
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After comparing both sides of equations (25a) and (25b), we get 

exr a xr �9 e20Xr  (27a) 
%j ~ Oq j or e ~ -  g ~ O q j  

r---  Oq j = eJq " " (27b) exr =eqjV gjj ~ or er ~ 0 ~  

From any of these expressions for eqj o r  e~: we can derive the other. For 
example, 

�9 = g f l  exr Ox" 1 OX" OX r 
- -  exr -2"7- = exr - -  e~ = gfleql ~ n  Oq t gjl Or<q> Or(q)j 

e~ OXr (28) 
,/g~J o9 

By the definition of linear momentum, P =/x dr/dt  = txr, and taking 
into a c c o u n t  dr<q) = dr<~>, we have P(q) =/Zl ' (q)  : /d , i ' (x  ) --: P(x) ,  and 

P(q ) - -  (eqj~ ~ j j  ~ )  = eqjP{q) ( 2 9 a )  

P<~> = (exrtXs r) = exrP( r )  (29b) 

where 

P~q> = ft~ ~ = Ixfiq ) = ~ P~ 
-r P<~> =/x~ r =/xr(x> = p r  (29c) 

By equations (29a)-(29c), we can write 

P<q> " P<q> = (%ilX~ tli) " (%jp,'v/-~j: t~) = ~ijP<q>P<q>i j 
P<x>" P<x> = (ex,/x~') �9 (exs/*~') = &sP<~>P<~x> (29d) 

In equation (29c), P~ = tzq j, P,~ = ~s which are the products of the general- 
ized velocity (4: or 2") and the mass/z  of the particle, are usually called 

�9 r the components of generalized momentum. The P{q> and P<x> are the com- 
ponents o f linear momentum in the (q)- system and (x)- system, respectively. 

Without loss of the generality, let us consider a single particle moving 
in a conservative potential. Its Lagrangian is 

1 
L(x, s =~-fi-P<~>- P<~>- U(x) 

I 
= 2---~ (exdxxr)(exdxis) - U(x) 

1 
= 2-~ e<q>" P<q> - U(q) 

1 
= 2-7 (eq'txv/-~" 0')" (eqjtxx/~jj ~ )  - U(q) (30) 
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and U ( x )  = U ( q )  is potential energy. According to definition, the canonical 
momentum is 

OL(q,q......._~) 1 (eq#~).(eqjp.v/~l:)=~p~q > ( i = 1 , 2 , 3 )  P<q)i - Oqi - /~ 

(31a) 

OL(x, ~) 1 
_ _  _ (exdz)(e~/z~) = p<r> (r = 1, 2, 3) (31b) P ( x ) r  - cg.~r 

As shown, due to differences in definition, a moving particle has three 
types of momentum with respect to any given coordinate system. They are 
the linear momentum P<q> =/zi-<q> (since/'<q> =/,<q,>, this definition itself may 
not be related to any coordinate system), the canonical momentum P<q)k = 
OL/O(1 k, and the generalized momentum Pqk = t~q k (this is only an abbrevi- 
ation with no relation with the theoretical structure). From equations (31a) 
and (31b) we see that the relations among them are 

1 P~q>- V/~k k P(q)k, P<~> = g~kk pqk (32a) 

P<~> = P(x)r " ~  p r  (32b) 

It may be seen from equations (32a) and (32b) that the corresponding 
components of  the three types of momenta are equal just in the (x)-system. 
Generally speaking, in a curvilinear coordinate system, not only may the 
corresponding components of the three types of momenta have different 
dimensions, but also different components of a given type of momentum 

A k 
may have different dimensions. We must not demand the operators P<q> 

A 
and P<q)k in any (q)-system take a uniform form. 

^ k  A 
3. SIMPLEST FORM FOR THE OPERATORS P<q> AND P(ok 

3.1. The Simplest Form of Operator Ptq)k 

We apply the transition procedure of equation (2a) to seek a general 
and simplest form of the operator P(q)k of canonical momentum P(q)k in 
any orthogonal curvilinear coordinate system. 

It is clear that the value of PB for qk and P<q)t is 6 k, i.e., 

{qk, P(q)l} = 6 k  ( 3 3 )  

where 6 k = 1 (as k = l) or 0 (as k # l). By equation (2a), we have 

{qk, p(q),} = 6tg_>/_~ [q~,k, p(q),]" = 6k (34) 
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If  we confine ourselves only to the condition that the commutation bracket 
in (34) be valid, we can generally take t3(q)t in the form 

^ h a t_3~(q ) (35) P(q)t- i aq ~ 

where ~(q)  is an arbitrary real function of q, and can be written as ft = 
a ~ ( q ) / a q  I, where ~(q) is a scalar function. Now let t~ k, /3~q)lundergo a 
unitary transformation e x p [ - i ~ ( q ) / h ]  tochange the gauge for P~q), in (35) 
and arrive at the simplest form: ?1 'k and P~q)t. In the coordinate representa- 
tion, qk = qk, we have 

O'kl>: {exp exp 
= qkl) = t~[) (36a) 

/3~q)tl)=[expr i , . ] / h  a O(q)\ 

:7 1] (36b) 

Since [) is arbitrary, we obtain 

^, h a 
~,l ~l = ql, P(q)I-- i aq l 

Thus the unitary transformation exp[- i~  ( q ) / h ]  does not change the coor- 
dinate operator, but only the momentum operator. Without loss of general- 
ity, the operator of the canonical momentum in the (q)-system may always 
be taken as the following simplest uniform form: 

fi(q)t = h 0 (l = 1, 2, 3) (37) i aq l 

In this view, the canonical momentum operator in equation (2b) is 
reasonable. 

3.2. The Simplest Form o f  Operator/;<q>~ 

Although we concluded that all momenta and the corresponding 
operators in (2a), (2b) are to be canonical momenta rather than linear, from 
the viewpoint of physical meaning it is required that the momenta be pure 
linear instead of canonical when we compose them with other physical 
quantities. [Of course, by equations (32a) and (32b) all the physical quan- 
tities containing momentum can also be expressed through the use of the 
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canonical momentum.] It can be seen from this that when we compose 
quantum operators corresponding to physical quantities containing momen- 
tum, the linear momentum operator is much more consistent than the 
canonical one. 

Since the classical Poisson bracket may be composed of  any two 
functions of  canonical variables, while the qk, P<q>l in equation (32a) are 
also functions of  canonical variables, we have the following Poisson bracket: 

{qk, elq>}=(Oq_____k OP~q) OP{q) Oq_____~k ~ 
\Oq i OP(q)i Oqi Op(q)i] 

1 k i 1 k 
=x/~u 6,81=-~glt S, (38) 

It can be seen from equations (19a), (19b) that the metric gkl is a function 
of  coordinate variables only. That is, in the coordinate representation, 
g, kt = gkl. Using the transition procedure (2a), we have 

,,/ 1 1 k st.pB l [ 4 k ,  p<q>]=~gn6k (39) 
{ q k, Plq)} = ~tglt r ~ ih 

By a similar method, after analyzing the dimension of  the commutation 
bracket in equation (39), we can write the expression for/3~q> as 

"1 h 1 0 ~ 10q~(q)  (40) 
P(q)- i ~ Oq I kOqt-t x/~tt Oq I 

and 

where 

l ^ h eq 0 t-V(q)~(q) 
P(q)-  i ~ 8q I (41) 

l eq 0 
- ( 4 2 )  V<q> - ~ aq 1 

is a gradient operator in the (q)-system. Since the interaction of  a magnetic 
field B = V x A with a charged particle is accomplished by the replacement 

it is clear that V(q)~O(q) in (41) is similar to a vector potential - ( e / c )A .  
Because V<q> x V<q> = 0, V(q)q~(q) may be interpreted as the vector potential 
of  the zero magnetic field. According to the discussion used to establish 
equation (37), this vector potential may also be removed by an unitary 
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transformation exp[-i~0(q)/h]. Hence, the operators of linear momentum 
in the (q)-system may always be taken as 

l 
^ h eq 3 h V 
P<q>- i ~ Oq t -  i <q> (44a) 

- -  = 7 V<x> (44b) P<;,> = e~ Ox ~ 

Their components are 

~l h 1 0 1 ^ 
P<q> ":- i ~ Oq I - ~ P(q)t (45a) 

~r h 0 A 
P<~>- i Ox" P(x)r (45b) 

We see from (45a), (45b) that in any coordinate system the component 
operators of momentum are of two types, which are associated with the 
components of linear and canonical momenta, respectively. Only in the 
(x)-system are /31x > and /$(x)l equal. By comparing equations (32a) and 
(32b) and equations (45a) and (45b), it can be shown that the relation 
between the operators of linear and canonical momenta agrees with the 
corresponding relation between the classical quantities. 

4. H A M I L T O N I A N  O P E R A T O R ,  R E P E A L  O F  
T H E  (x) -COMPONENT 

We prove now that any physical quantity that contains and is expressed 
by means of P<q> or P~q>(1, 2, 3) instead of P(q) can be transformed directly 
to a corresponding correct operator in any orthogonal curvilinear coordinate 
system. In particular, the classical Hamiltonian in any orthogonal (q)- 
system can be transformed directly to the corresponding correct Hamiltonian 
operator along step B of the process in Figure 1, i.e., we obtain 

/4(~,/3~q)) = H'(~,/~(q)) (46) 

We may say that Figure 1 is closed. 
Let the classical quantity P<x> �9 P<x> undergo successively steps C and 

B of Figure 1, i.e., 

s t e p  C s t e p  ~ ^ ^ 
Poo " P<x> -" P<q> �9 P<q> ) P<q) �9 P<q> (47)  
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Since P<x> = P<q>, ~ep C here evidently is valid. Now it needs to be proved 
that the operator P<q> �9 P<q>, as a result of step B, will present a correct form. 
For this purpose, substituting the operator of (44a) into the right-hand side 
of step B in (47), we have 

.... :,,v-r:.o~ o) :e',, o)] 
P<q>P<q>=\ i] L t#7E  oq ~ " k~ , ,  o7 

k is variable with the point q, using equations Because the direction of  eq 
(27a), (27b), and (15) and 

we get 

Ox___Z = ~ 1 OX~ _ ki Oxs OX" 
er Oqk ex,g gki - ~  - e=~g ~ = exrgki Oq': (48) 

(~)2 [( k~x, ~)( oxso)] 
P<q>" ~}<q> = (exr" ex,) g ~ 0 gO Oq j Oq' (49) 

Let both sides of equation (49) act on an arbitrary ket I); we obtain 

^ ^ h 2 

- ~ ~'~ gO Ox~ 
Oq j Oq k \ Oq' ]_] Oq ~ 

\-~q i ] \-O-q-f] j o q k o q , 

U sing equations (19a), (15), and (14), we can write the first term of equation 
(50) as 

()~,,,,[o ,,,,,,>] ,'~:r~ ] . ,, o1~= oi) 
7 ~qk(g Oq' \i] Laq k(gk'8') aq' 

\~I k \aq k aq k] 

= ~ g2k Oq k Oq k] 
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The second term of  equation (50) can be written as 

\ O q' J -~q k \ g - ~  ] J O q--7 

"L ~ aqklk ~ aq' aq ' l Jaq  l 

+ ~ 3rs gk,gO Oxr 0_~ 
Oq ~ Oq k \ OqJ ]_l Oq 

(h)2 [ " " i '~ of-L> (52a) = 0 +  -~ ~rs gk~g Odxr O-~ 
Oq i Oq k \ OqJ ,l .J Oq I 

After exchanging the symbols k ~- l and i .~ j, according as k = 1 and 
k # l, the second term is divided into two parts. Next, using (14), we have 

(~)2 F ""oxr O ( ' a x : ~ l a l >  Ig,~,,u__ ~ 
6rs L 6 aq~ 3qk \ oqJ j j aqt 

aq ~ \ aq~ l J aq k 

[ + &., gk'g 'jOx~ 0 fox. l al> 
oq' oq' \-oTl J~,oq ~ 

= - - 8r" ~ ~kg a q k a q k \ a q k l l a q  k 

o,> 
aq k ] aq k 

, aqk] oqk 

Using equation (14), we find that only the third term of equation (50) 
remains for k = h 

\ aq' l k aqJ l ] aqkaq ~ aq kaq ~ 

\ i l k \gkk oqkoq ~] 
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Putting equations (51), (52b), and (53) into equation (50), we obtain 

X t /  k 2g2kk Oq k Oq k 

( 1 Og,t O])~ 1 021)'~1\ 
+~ .'2gkkgU Oq k o q k ] k e l  -t gkk oqkoq l , ] l /  

( h ) 2 [  1 0 ( gv~(3~ 0)_~ 1 0 ( ~  0 )  

= ~ c 3 q l \  gll ~ i  gV~(3) Oq2\  g22 Oq :~ 

-~ ~ ( 3 )  Oq 3 \  g33 Oq 3 

" (o)k~ gkk "(q)k] (54) 

where g(3)=g~lg22g33. Since the ket vector I) is arbitrary, the operator 
P~q) �9 P(q) corresponding t o  P(q) �9 P<q) undergoes successively steps C and B 
to give 

P<q>" e(q>= k ~ (q)kk gkk P(q)k (55) 

In addition to steps C and B in Figure 1, we may also choose the 
process of letting the classical quantity P(x> "P<x> undergo steps A and D: 

p<x>. p<.~ step A) P(x)" P(x) step D) ~q)~ ~q) (56) 

Because step A here is performed in the (x)-system, it is clearly valid. Step 
D is familiar to us and leads to the following operator by the use of the 
rule of the compound differential: 

P<q>" P<q> k gv~<3) P<q)k\~kk P(q)k (57) 

The results (55) and (57) are in agreement with each other, so that the paths 
in Figure 1 are closed. That is, if the classical Hamiltonian is expressed in 
terms ofiinear momentum, the (x)-condition is then unnecessary for determ- 
ing the Hamiltonian operator. The same conclusion is valid for other 
classical quantities containing momentum. 

For example, the operator of the angular momentum in a spherical 
coordinate system can be given correctly by the use of the methods discussed 
above. In fact, the radius vector in a spherical system, abbreviated as 
(s)-system, may be written as r<s> = esrr, and the square of the arc element is 

ds~s) = ~ gkkdq 2 = dr2+ r 2 dO2+ r 2 sin 2 0 d~p 2 (58) 
k 
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Hence the metric components are 

gll = 1, g22 = r2, g33 = r2 sin2 0 (59) 

By equations (29a) and (32a), the linear momentum in the (s)-system may 
be written as 

P<~> = e~kP~> 

= e~(~ g~S  4 ~) 

= e ~ f t f  + e~ol~rO + e~p~r sin O~b 
r 0 (p = e~,P<s> + e~oP<~> + e~P<~> (60) 

momentum and its square in the (s)-system are, 

L<s) = r<s) • P<s) 

r 0 = esr x (e.rP<s) + e.oP<.> + e~,P<~> 

= r(es.P~,> - e,o P~>) (61) 

L~s> = L<~>" L<s> = r 2 ( p ~  + P'~,~) (62) 

Both L<s> and L~> have been expressed in terms of linear momentum in the 
(s)-system and may directly be transformed to the corresponding operators 
in the (s)-system by the use of (44a), and the kth dimensional formulas of 
(55) and (59), 

L<,> = ~<,> • f'<s> 
A 

= r(es,oP~,>- e,oP<,>) 

1 0  e o ;) 
= r e ,~r  O0 rs inO 

o . , o  o) 
= e,~ ~ sin 0 0~ (63) 

"2 _ ( h ~ 2 (  1 0 ( s i n 0  0 )  t 02)  
L<s>- \ i~  \ s in  O 00 0-O q sin: 0 0-~ ~ (64) 

By equations (27a) and (59), we can find the relations between (%~, e~2, e~3) 
in the (x)-system and (eqr ,  %0, eq,p) in the (s)-system, 

e~r = e~l sin 0 cos ~ + ex2 sin 0 sin ~ + ex3 cos 0 (65a) 

es0 = e~l cos 0 cos ~ +ex2 cos 0 sin ~o -e~3 sin 0 (65b) 

e~. = -exl sin q~ +ex2 cos ~ (65c) 
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Using equation (63), we obtain 

L<, o = e~l �9 L~>-= ih sin r + cot 0 cos ~ (66a) 

( 0 2) /2~>--e~2- L(~>-= - i h  cos ~ - - ~ - c o t  0 sin ~ (66b) 

~3 " 0 
L<x> = ex3L(s> = - ih ~ (66c) 

Oqo 

^ "2 ^2 ^3 As we can see, in the (s)-system the operators L<~>, L<s>, a n d / ~ > ,  L<~>, L<~> 
are in agreement with those in the (x)-system; thus, the restriction of  the 
(x)-condi t ion can also be removed for the operator substitution of  the 
angular momentum. 

5. REPEAL OF S Y M M E T R I Z A T I O N  P R O C E D U R E  

I f  two classical quantities that are canonical conjugate to each other 
are contained in any term of  a classical equality, their order is ambiguous. 
In order for such terms to be transformed to a Hermitian operator, the 
symmetrization procedure seems necessary. In fact, such types of classical 
equalities include the transformation expressions between linear momentum 
components  and canonical ones as caused by a change of coordinate systems. 

Suppose that the (q')-system in (13a), (13b) is replaced by the 
(x)-system; we have 

qk = qk(x~  ' X 2, X a) = q k ( x ) ,  k = 1, 2, 3 (67a) 

X r = x r ( q l ,  qZ, q3) = x r ( q ) ,  r = 1, 2, 3 (67b) 

Taking the derivative o f  equations (67a), (67b) with respect to t and the 
generalized velocity {1k or ~r successively, we get 

Mt Oq and O:~ c~x 
O:~ - Ox O---~ - Oq (68) 

Since the (q)-system and (x)-system are static relative to each other, the 
Lagrangian of  a given mechanical system is independent of the choice of 
system, i.e., L(q ,  {1) = L ( x ,  Yc). Hence we get 

OL(q,{1) 0~ r OL(x,yc)  Ox r 
P(q)k -- o{1k o{1k o.~r = oqk P(x)r (69a) 

OL(x,  Yc) 0(1 k OL(q, {1) O q k o  
P(x)r = OYc" OX r o{1k  ~- OX r Jt (q )k  (69b) 
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By the definition of the components of the linear momentum, we have 

P~q> = izi'~q> = tZ V/~kk dt k = ~ q~kk Oqk .r _ r---- Oq k r OX" X -- V gkk ~ P(~> (70a) 

r 0 .k 1 c~X r k 
P<x> = tz~<~> = tzx ~ = tZ ~qk q -- ~ 3q ~ P<q> (70b) 

Equations (70a) and (70b) are the transformation expressions between 
the linear momentum components. Using equation (19b), we can prove 
that there is no conflict between equations (69a), (69b), and equations 
(70a), (70b). 

It can be proved that the form of PB will be invariable when one 
coordinate system is changed into the other. Suppose F(q,p(q)) and 
G(q, p(q)) are two arbitrary scalar functions of the canonical variables (q, p); 
since 

F(q, p(q))  = F ( x ,  P(x)), G ( q ,  p(q))  = G ( x ,  P(x)) 

we have 

(OF(x,p(x,) OG(x,p(x,) 
{F(x,  p(x)), G(x, p(~))} = \ ox' ap(x), 

_oG(x ,  p(x)) OF(x, P(x))) 
Ox' Op(~)~ / 

= [Oq___ k OF(q,p(q)) Op(o), Oa(q,p(q)) 
\3x  i Oq k 3p(~) i  Op(q)l 

3q k 3G(q, p(q)) Op(q), OF(q, p______~(q))~ 
3X -i 3 q  k c3p(x) i 3P(q)l - 1  ] 

X g 
=Oq----~k'ox' ~q l {F(q'p(q~)' G(q,p(q))} 

= {F(q, p(q)), G(q, p(q))} (71) 

In the third step we have used equation (69a). 
It is easy to see that the commutator bracket itself, (1/ih)[A, B], also 

is a Hermitian operator provided each of A and B is a Hermitian operator. 
Now, let us consider the situation that equation (69a) is substituted 

into the corresponding operator expression without the symmetrization 
procedure. Let the classical momentum P(~)~ undergo successively steps C 
and B of Figure 1 and represent the resulting operator in the (q)-system 
as Q( q, /~(q)), and then let the same P~)2 undergo steps A and D of Figure 
1 with the resulting operator denoted as Q'(q, ~(q)). Obviously, if the operator 
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A A ,.~ A 

Q(q,p(q)) is equal to ' ^ ^ Q (q,p(q)), and they are Hermitian operators, then 
both the symmetrization procedure and the (x)-condition are unnecessary. 

Let the canonical momentum component P(:~ undergo step C of 
Figure 1. Taking into account equation (71), we have 

=/x{x, H(x,  p(x))} ,/z{x'(q), H(q, p(q))} (72a) P(x) i i s t e p  c 

It can be proved that the right-hand side of (72a) is equal to the right-hand 
side of (69b). We have 

P(x~, =/x{x'(q), H(q, p(q))} 

(Oxi(q) OH(q, p(q)) OH(q,p(q)) Oxi(q) ') 

= tz ~ Oq k Op(q)k Oq k Op(q)k / 

Ox'(q) oH(q,p(,~) 
- tz Oq g Op(q)k 

_ Oxi(q) ok 
Oq k 

_Oxi(q) 1 P~o~ 
Oq k V~kk 

1 0 x i ( q )  
- Z - -  P(g)k k ggk Oq k 

�9 Oxi(q) g jk  Oq j P(q)k (for j �9 k, gjk = O) 

According to (19a), 

Hence we have 

and 

gjk = ~s Oxs Oxs 
Oq j Oq k 

Oq j Oq k 
g j k  = ~  (73) 

OX s OX s 

OX~_~ Oq j Oq k OX i Oq k g~k (74) 
- ~ -  ~ Ox ~ Ox ~Oq j - O x  ~ 

X i gjk O (q) Oq k 
P(x) ,  = - o q i  P(q)k  = o x  ~ P(q~k (72b) 
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We can see that the result of taking stepC in equation (72a) is in agreement 
with equation (69b) given by the method of the compound differential. 

Now, perform the transition procedure (2a) and let the right-hand side 
of (72a) undergo step B of Figure 1: 

P(x), = [z {xi(q), H(q, p(q))} ,t~p B ~ [:~,(q), ~(q,/3(q))] (75) 

By equation (55), the Hamiltonian operator in the (q)-system is 

g(q,  p(q)) 2~,~ @(3) P(q)k \ gkl e(q)l "~ 0(0) (76) 

Choosing the coordinate representation [~i(q), U(~)]=O, substituting 
equation (76) into the right-hand side of (75), and letting it act on an 
arbitrary ket vector, we get 

- -  [x  (q ) ,  g (q , /~(q) ) ] ] )  
ih 

- 2ihl xi(q) ~ P(q)k(4g<3) g P(q)t) 

1 ~(o)k(x/~(3)gktp(q),)x,(q)} ) 

_ih2 xi(q) Oq g~/~(3) g ~qt) 

1 0 ( g,~(3) gk, O~)X,(q)} ) 
g'~(3) Oq t' 

O --iIi{xi(o)~o-~(xg/~(3)gktO]--~)t) 
2 g(3) aq / [, o( ox,(  ll> x/~)(3) Oq k gx/~(3) gg' _k, aX'(q) O[) 

oq / J oq 

k, aXi(q) 01) / , (q)  1 O ( O_~.~l)} - g aq k aq I gv~(3) aq k v~3> gkZ 

The summation for the first and fifth terms is equal to zero. Exchanging k 
and l in the third term, we obtain 

^ ~ ~ h S  axe(q)  a 
---~ [:~'(4), H(q,P(q,)]l)=~ ~.2g k' 
ih Oq k Oq l 

1 a k { g~(3) klax'(q)'~] I\ " 4 - -  
g~/~(3) Oq k 
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Since I) is arbitrary, we have 

Iz . i  ^ ^ . A h [  a x i ( q )  0 
- -  [ x  (q) ,  H ( q ,  p(q))] ~2g kl 
ih = -~t Oq k Oq t 

1 O( g, 1 -~ gv~(3) aq k aq'  ] (78) 

The second term in equation (78) is a scalar function x~(q)  acted on by the 
Laplacian in the (q)-system. Since V~q> 2 =V<x>, while V~x>x ~= 0, the second 
term of (78) is equal to zero. Putting equation (74) into the first term of the 
right-hand side of equation (78), we obtain 

~h[~'(4)'  ^ A , _ a q '  ^ H ( q ,  p(q))] - Ox-- 7 Peq)t (79) 

"~ A A 
Because ~ (~)  and H ( q , p ( q ) )  are Hermitian operators, both sides of (79) 
are also Hermitian operators. On the other hand, let the canonical momen- 
tum component Pcq)~ undergo step A of Figure 1 and use equation (37); 
then we have 

P~x)~ stepA ,, h a (80) 
P~,o i -  i ax  i 

With the help of the rule of compound differentiation, let the right-hand 
side of equation (80) undergo step D of Figure 1 and use equation (37); 
then we obtain 

A h 0 step D • tgq k 0 t g q k ^  

P(x), = ~ ax  i ~ i ax  i a q  k - a x  i g (q )k  (81a) 

The operator of the right side here agrees with that of equation (79). This 
means that Figure 1 is closed. 

Let (Ox~/Oq j)  left-multiply both sides of equation (81a) and sum over 
the index i; then we have 

OX i ^ OX i Oq k ^ ,, 

Oqt P(x)i - aqi Ox i P(q)k = P(q)l (81b) 

Equations (81a) and (81b) are homologues of equations (69a) and 
(69b), respectively. 

We have seen from the discussion that not only is the transformation 
expression a Hermitian expression, but also both the restrictions of the 
(x)-condition and the symmetrization procedure have been removed. 
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The transformation expression between linear momentum components 
can be derived by the use of (45). From equation (81b), we can write 

x i ,, 3x____~ ,, _ Ox" j 
b~q> = P(q)k = oqk P(x)i - 3,j Oq k P<~> 

o r  

" ~ G> (82) 

Inserting equation (19b) in the right-hand side of the above equation and 
using equation (14), we get 

P<q> = ~ \ o q k ]  grs \OX OX']  P}x> = ~ \ O x ' ]  P(x> (83a) 

Using equation (81a), we obtain 

1 _ _  P<~>- P(x)i 

3q k ,, 

= OX i P(q)k 

Oq k "l 
= 3 k , ~  ~X i P<q> 

k Oq r~ OX___~ OX' ^t 
= 3kIV'~kk - ~  g Oqr OqS P<q> 

i 

= ~kl~kr(gkkgrSgrS) 1/2 ~ PI~> 
3q 

i 
f - - ~  Ox ~ k  

= v g Oq---- s r<q> 

] C)X' ^ k  
= ~ g k k  Oq k P<q> (83b) 

Equations (83a) and (83b) are homologues of equations (70a) and (70b), 
respectively. 

In addition to the above discussions, we must inquire how, in an 
arbitrary curvilinear coordinate system, the general expression that includes 
the classical momentum can go over into a Hermitian expression of corre- 
sponding operators, in terms of the excluded (x)-condition and symmetriz- 
ation procedure. 
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For example, suppose that an equality which includes the linear 
momentum components is 

k 1 r s 
eqkq~t ( q )P (q )  = exrqJs(x)Pr (84) 

where ~ptk(q) and ~O~(x) are arbitrary functions of q and x, respectively. Is 
it necessary that we inquire into the operator expression corresponding to 
the above equality? 

Evidently, for equation (84) to have the necessary physical meaning, 
it must not be in conflict with the following equality: 

eqjP~q) = e,:,P(~) (85) 

Using the eq2 dot product of equation (84), we obtain 

k l r s 
eqj " eqk~t  ( q )P(q )  = q~( q)P~q) = eq: . ex,6~(x)P(, o 

o r  

~,~'(x) 
P~q) = E (eqj. exr) ~ P(.> j ~l(q)  

Using the eqt dot product of equation (85), we obtain 

] - -  r eql " eqjP(q>- (eqt" ex,) P(x> 

(86) 

o r  

P~q) = -  (eqt" exr)P(~) (87) 

Since equation (84) must be consistent with equation (85), we will have 
to require that equations (86) and (87) are in direct proportion or simply 
equal to each other, i.e., 

~(x) 
(eql" e,,r)P(~) = Y, (eqjexr) - -  P(~) j ~ ( q )  

The different components of momentum are independent of each other; we 
have to set j =  1, r = s ,  and 

q~jCq) = ~r(x) = C (88) 

where C is an arbitrary real constant. It is clear that th~ problem of replacing 
equation (86) by a corresponding operator expression returns to the same 
thesis of equations (70a) and (70b). With similar reasoning, other equalities 
containing the linear or canonical momentum must not conflict with 
equations (69a) and (69b), and equations (70a) and (70b), in order to keep 
the necessary physical meaning. Therefore, it is unnecessary to discuss the 
requirement of the (x)-condition and the symmetrization procedure. 
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6. CONCLUSION 

First, since both the classical Poisson bracket and the quantum commu- 
tation bracket have completely similar algebraic properties, the most 
appropriate transition program may be based on the Poisson bracket. 
Second, in an arbitrary orthogonal coordinate system, the canonical momen- 
tum operator is not equal to the corresponding linear momentum operator. 
As the linear momentum is much more appropriate than the canonical one, 
all classical quantities containing momentum must be expressed in terms 
of  the linear momentum instead of the canonical one before making the 
operator substitution. Third, from the results that equations (32a) and (32b) 
correspond to equations (45a) and (45b), equations (69a) and (69b) to 
equations (81a) and (81b), and equations (70a) and (70b) to equations 
(83a) and (83b), etc., the correspondence principle is valid and both the 
(x)-condit ion and the symmetrization procedure can be removed. 
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