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Quantization in Curvilinear Coordinates
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Two prescriptions often used to find Hermitian operators corresponding to
classical quantities can be removed. Components of momentum are of three
types, linear momentum P, canonical momentum P, and generalized
momentum P"; - Using metrical geometry, their mutual relations are established.
The operators P, and P, are given by substituting quantum commutation
brackets for classical Poisson brackets. The relations among classical quantities
are divided into two types according to whether they have physical meaning.
Those which have physical meaning go over into the corresponding operator
relations.

1. INTRODUCTION

If G(g, py)) is a scalar function of canonical variables g(q’, %, ¢°)
and P)(Pgy1, Plgy2, Pigy3), itis wellknown that G(g, p,,,) obeys the classical
dynamical equation

G(4, piay) ={G(q, poy), H(q, P} (1

where H{qg, p,,) is the Hamiltonian of the classical system, and

oG 3aH oH 3G
{G(‘LP( ))s H(q,P( ))}=<_—;_———‘_-_; )
! ! 89 3Py 89 OP(q)i
is the Poisson bracket (abbreviated as PB) for G(q, p,)) and H(q, p(,).
Further, the quantum equation of motion corresponding to a given classical
system can be found by substituting the commutator bracket divided by ih
for the PB,

G=1{G, H}—>é=;%[é, A] (22)
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2 (2b)

Py > Py = Py

~ |

where ﬁ(q)k, G, and H are operators corresponding to the classical quantities
Py, G(q, pgy), and H(q, p(,), respectively, and

[G, H]=(GH - HG)

However, it was found that the quantization program of equations (2a) and
(2b) is not always valid in an arbitrarily chosen coordinate system. Hence,
Schiff (1968) pointed out the following two prescriptions:

“First, the coordinates and momenta must be expressed in Cartesian
coordinates. Second, ambiguities in the order of noncommuting factors are
usually resolved by taking a symmetric average of the various possible
orders.”

These two prescriptions will simply be called the “(x)-condition” and
the “symmetrization procedure,” respectively.

Indeed, it can be seen why the (x)-condition seems to be a reasonable
restriction when we carry out the substitution from classical quantities to
quantum operators in spherical polar coordinates. Suppose that the Car-
tesian coordinates (x) and the rectangular coordinates (q) are static relative
to each other without loss of generality, let us consider a single particle
moving in a conservative potential energy field U(x). Evidently, U(x)=
U(q). Then the Lagrangian L(x, %) of the single particle is

Lix, %) =216 + () + ()] - Ux) (3a)

L(g, §) =§ (P + 262+ r* sin® 06%) — U(q) (3b)

and L(x, )= L(q, 4). In accordance with the definitions of the canonical
momentum and Hamiltonian, we have

oL .
P(x)i=a—§i- (l=1’2’3) (43.)
oL aL .
Py,=—=ph,  Pya=—z=pré
) = o Hn (90~ 25 M )

L
P, =—=ur?sin’ 8¢
($)e 96 ® (4
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and ,
H(xs p(x)) = P(x)ix" - L(x: x)

1
=2—I; (Pior+ Plost Ploys) + U(x) (5a)

H(q’ p(q)) = P(s)qu - L(qa Q)
=% (P+ 126+ sin® 06 + U(q) (5b)

and H(x, p.y) = H(q, p(,))- Obviously, equation (5b) can be expressed in
terms of canonical momenta P, =3L/ 84" and generalized momenta pPr=
g, respectively. We have

1 1 1
H(q, P(s)) =—2—; (P%s)r+—r__2 P%s)0+:2—si~nz—é P(s)qo) + U(I‘, 9, QD) (63)

1
H(q, ps) == (P2, +r*PY+r’sin® 0 P3)+ U(r, 6, ¢) (6b)
M

Now, with the help of the quantization procedure of equation (2b),
the Hamiltonian functions of equations (6a) and (6b) will be replaced by
corresponding operators, respectively.

In the (x)-system, the canonical momentum operators of equation (2b)
are

i=1,2,3

Substituting ﬁ(x)i into equation (5a) gives
-—_h_( 62 N 82 N 02
2p \a(x"Y a(x?)? a(x?)?

H(% Py =— )+ U(x) (N

In the (s)-system, i.e., spherical coordinates, if the operator of equation
(2b) denotes operators of canonical momenta, i.e.,

A h 3
mk:?;«?’ gq=r,ord,org

then substituting f’(s)k into equation (6a) gives

2 2 2
O L 1 —i——) +U(r, 8, ¢) (8a)

ﬁ A,As — e ——
(4, Pisy) (8r2 2 362 rzsinzﬁacpz
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If the operator of equation (2b) denotes operators of generalized
momentum, i.e.,

s g=r,or b,or ¢
then substituting P* into equation (6b) gives

" h 82 82 2
H( p)=———|—+r—5+ o— +
(4, ps) 2 (6:‘2 Py r? sin® ) U(r, 6, ¢) (8b)

On the other hand, it is well known that thg correct Hamiltonian
operator in the (s)-system can be derived from H(X, p,,) given in the
(x)-system by the use of a compound differential, that is,

. af1a(,0 L 3 ")
A =—c + 9%
(%P(q)) 2[ ar( 67‘) Sln 0 50 (Sln 20

—1~‘92]+U( 6, ¢) ©)
r’sin’ 0 9 Lee

We see that neither equation (8a) nor (8b) is the correct Hamiltonian
operator in a spherical coordinate system. It seems as if the coordinates
and momenta are only expressible in Cartesian coordinates. The transition
procedures given in equations (2a) and (2b) can be considered reliable.

When the transformation laws of components of canonical momenta
under transformation of the coordinate system are taken over to the corre-
sponding operators, it seems as if the symmetrization procedure also is
reasonable. It will be shown Jater that the transformation law of the canonical
momenta is

(10a)

The order of classical quantities P )k and 3g"/3x’ is commutable, but the
order of the operators P(q)k and #g*/ox’ is not. For P, o on the left side
of equation (10a) to go over into a Hermitian operator P(x”, the sym-
metrization procedure needs to be applied to the right side of (10a) before
the classical quantity is replaced by the corresponding quantum operator;
that is,

1 Bq aqk
P =5( T Pyt P(g)kg> (10b)

Only then can we carry out the transition from classical quantities to
quantum operators. For clarity, let both sides of the operator equality
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corresponding to (10b) act on an arbitrary ket vector. We thus obtain

A 1 aqk A A aqk
Py =3 (g Pyt Py Py

The operators in the parentheses have been composed into a Hermitian
operator. Thus, it seems as if the symmetrization procedure originating
in the Hermitian requirement is also reasonable. After performing the
operation, since the ket vector is arbitrary, we have

ag* 4 o9 (8(1 ))
Piyi= Pyt 11
&) (ax @k T aj aq" (1)

On the other hand, the correct transformation law for momentum
operators in the (g)-system can be derived by the use of the rule of the
compound differential,

h o hagt o aq* 4

P= 5™ 5 5q"= a1 P 12

The right side of equation (11) gives rise to some additional terms compared

to equation (12). Evidently, the transformation expression between the

coordinates of the (g)-system and the (x)-system is g* = (afx'+b*), and

a¥, b* are constant, i.e., the (q)-system must also be a Cartesian coordinate

system or the additional terms will not vanish. It seems as if the symmetriz-
ation procedure must be performed in a Cartesian coordinate system.

The above arguments can be illustrated by the process in Figure 1. If
we perform steps A and D in order, then we arrive at the correct operator
0'(4, P(,,)) in the (gq)-system, for example, the right-hand sides of equations
(9) and (12). If the steps C and B are performed successively, though we

Step C
Qx, p ) —= Q\q, p )
lrensfornatlon of Coordinates - -

Quanti -~
zation

Step A
Guantization

[as]

jo 7}

@

2
. D wlg, p )
A Step D
A%, B ) : > Q'(g, P )

Trensformation of Coordinztes
Fig. 1
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may produce an operator Q(§, Py)) inthe (q)-system [such as the right-hand
sides of (8a), (8b), and (11)], this operator Q(4, D)) is not always equal
to the correct operator é’(q, Pay)-

In order to seek a general quantization procedure without the restric-
tions of the (x)-condition and the symmetrization procedure, the coordinate
systems have been examined in different ways, such as the method of
covariant derivative or the method of infinitesimal contact transformation
with classical analogy. In this way Merzbacher (1970) came to the following
conclusion: the types of coordinate systems in which the canonical quantiz-
ation program is valid are those which can be obtained from a Cartesian
coordinate system by continuous succession of infinitesimal contact trans-
formations (it may be proved that the quantization program in the PB
formalism is similarly valid). Because the classical analogy might be not
accurate, we tried to solve the same problem with the help of the infinitesimal
contact transformations in a first-order approximation (unpublished work)
and found that a coordinate condition under which equations (2a) and (2b)
are valid is

[4, G1=0

(characterizing so-called “G-type coordinates”) where G is a Hermitian
operator corresponding to the generatrix function G(q, p(,) of infinitesimal
contact transformations. We were only able to replace the (x)-condition by
the G-type coordinates, while the symmetrization procedure remained
unchanged.

The following discussion shows that, provided we apply exactly the
metric analytical method to the transition from classical to quantum systems,
not only can both the (x)-condition and the symmetrization procedure be
entirely removed, but also only equation (2a) is necessary.

2. METRIC RELATION OF THREE TYPES OF
CLASSICAL MOMENTA

Suppose that the two arbitrary systems of orthogonal coordinates (g%
and (g'") (k, r=1, 2, 3) are static relative to each other and that there exist
single-valued invertible transformation relations between them,

g“=4(q", 9", 9" =(q), k=1,2,3 (13a)
9"=q9"(¢", 9% a)=4q'(q), r=123 (13b)

where the functions ¢*(g’) and q'’(q) are assumed to possess continuous
partial derivatives to the needed order. In the orthogonal coordinate systems
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(g) and (q'), the metric components g, and g, satisfy the conditions
gu=0 for k#l
(14)
grs=0 for r#s

Their contravariant components for the given point g in space are
defined as the inverses of g; and g, i.e.,

g;g'=8, and glg"=6; (15)

Using the metric components g and g, the square of linear elements
in 3-dimensional space ds® can be written as

dsiy=dr, - dr, = g; dq’ d’ (16a)
ds(gn=dr g - dr gy =gl dq'” dg"” (16b)

The interval between two arbitrary points in space is invariant, i.e., ds(,;,=
ds?,,. Using equations (13a), (13b), and (14), we have the equahty

39" oq’ . .. . .
ds® =gy dq’ dq’ ——g,] 4 a;,S dq'" dgq’ 17)

Comparing equations (16b) and (17), we obtain
%' 94’ g 244"
aqlraq/s’ L rsaqi aqj

If we replace the (q')-system with the (x)-system, then g/, = 8, (Kronecker
delta) and by equations (18) we have

g = 8y (18)

ax" ax® ax” ax’
=0T F T 19
B = O3 q* g’ ;aq g’ (192)
3g" oq' aq")
=1 )=
8T ax” or );.gkk(ax, 1 (19b)

Letthe {e,;} = (e,,, €,, e,3) and {e,,} = (e,, €,,, e,3) be orthogonal unit
vectors along the corresponding curve of coordinates which passes through
a given point g or x in space. Then we have

e, €, =08y or €, € =0, (20a)

The corresponding {e)} and {e} are defined as

e,=g’e,; or e.=8"e, (20b)
Using equation (15), we get

gie,=e; and  ghe,=ef (20¢)
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The displacement dr may be written as

— J o k g.J —ak
driy = e,; drig, = gine, drigp =eq drg;

(21)
dr,y=e,, dri,, = 8,.€; driy, = e dr,
where
dr(q)k = 8k dr{q) » dr<x>s = 6rs dr(rx> (22)
Hence
ds® = drigy - dregy = (e, - &) drig drl
ar<i > 3r{ ) 3k 3.1 k g1
=§, —L M gak dg' = g, dg* di 23
,aqkaq,qq gudq - dq (23a)
d82 = dl'(x> . dl'(x) = (ex, . exs) dr{x> . dI'(sx)
=8, dryy - drix,=8,, dx" dx* (23b)

Now, using equation (14), we can write
dri,=g; dg, dri,=dx" 24)

g;;dq’ is the jth component of dr relative to the (q)-system and has
dimension of length, while the dimension of dg’ is not always length. Using
equations (22) and (24), we can write down

dr, =e,; drly,=e,;Vg; dg’

=), drgy=elVg” dg, (25a)
dr,,=e, dri,=e,dx"

=e dryy, = ey dx, (25b)

As both {¢’} and {x"} are static relative to each other, we have dr., =
dr.,, ie,

r

. , 9x .
€4V &jj dqj = €xr dx' = €y aqj dqj

e Vg’ dg;=e, dx,=e} Z;’ dg; (26a)

, ; 3q .
e, dx" =e, Vg dq’ =eq,-\/gjj5;; dx

e, dx, =ein/g? dg=el/g" ;ﬂ; dx, (26b)
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After comparing both sides of equations (25a) and (25b), we get

r

e, 9x . eL ox,
8y =———— O e,=—F/=—=— (27a)
Vg 99’ Vg og;
aq . 79
€xr =84V 8 a—z-; or e,=epvg” a:j (27b)

From any of these expressions for e,; or e}: we can derive the other. For
example,

X . e, Ox" 1 Ix’ ax’
ey=gle, =g’ - —=—e, - =e,—
¢ ? Venoq' gy Torgy oy

r

_ e o

Vg7 ag

By the definition of linear momentum, P = x dr/dt = ut, and taking
into account dry, = dr,,, we have Py, = uk,, = ufy =P, and

(28)

Py= (equ“/—g—J; qj) = equ{q) (29a)
Py = (equx’) =e,Pl, (29b)
where
Plyy=pvg; & = pily=vg; P, (296)
Ply=px" = pr{,= P
By equations (29a)-(29¢c), we can write
Py - Py =(e,uvgi d') - (eguvg; ¢') = 8;P Pl (29d)

Piy - Py =(eqpux") - (exoux’) = 8,,P, Py
In equation (29¢), P} = ug’, P = ux", which are the products of the general-
ized velocity (¢’ or x”) and the mass u of the particle, are usually called
the components of generalized momentum. The P/, and P(,, are the com-
ponents of linear momentum in the (g)-system and (x)-system, respectively.
Without loss of the generality, let us consider a single particle moving

in a conservative potential. Its Lagrangian is

. 1
L(x’ x) :Z P(x) * P(x)_ U(x)
1 . r .5
=7, (ennX ) eunx™) — U(x)
I

1
=§;P<q> Py - U(?)

:i (equvgi §') « (eg;uvVg; ¢)— Ulg) (30)
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and U(x) = U(q) is potential energy. According to definition, the canonical
momentum is

aL(q, ) 1 - i .
Pgyi= a(; q (eqil-l'v 8:i)* (equ,v 8 d’) =g P, (i=1,2,3)
(31a)

_3L(x, x) 1
.y - (exr/-l‘)(exs/-"x ) P(x) (r = 19 2a 3) (31b)
ax M

- P, (x)r
As shovx;n, due to differences in definition, a moving particle has three
types of momentum with respect to any given coordinate system. They are
the linear momentum P, = ui,, (since I, = ¥4, this definition itself may
not be related to any coordinate system), the canonical momentum P, =
dL/34*, and the generalized momentum Py = wg” (this is only an abbrevi-
ation with no relation with the theoretical structure). From equations (31a)
and (31b) we see that the relations among them are

1
Pécq>=@ Pigyks Pécq>= vV 8k PZ (32a)
Plyy= P, = P (32b)

It may be seen from equations (32a) and (32b) that the corresponding
components of the three types of momenta are equal just in the (x)-system.
Generally speaking, in a curvilinear coordinate system, not only may the
corresponding components of the three types of momenta have different
dimensions, but also different components of a given type of momentum
may have different dimensions. We must not demand the operators P(q>
and P(q)k in any (g)-system take a uniform form.

3. SIMPLEST FORM FOR THE OPERATORS P%,, AND P

3.1. The Simplest Form of Operator ﬁ(q)k

We apply the transition procedure of equation (2a) to seek a general
and simplest form of the operator ﬁ(q)k of canonical momentum P, in
any orthogonal curvilinear coordinate system.

It is clear that the value of PB for ¢g* and P, is &}, i.e.,

{qk, Pyt = 5;( (33)
where 8 =1 (as k=1) or 0 (as k#[). By equation (2a), we have

1 . A
—[§" Pl=87 (34)

k P =8k
{q", (q)l} 1= ih
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If we confine ourselves only to the condmon that the commutation bracket
in (34) be valid, we can generally take P(q,, in the form

A h 9
P(q)i=“i“ 5‘7*‘]?(‘1) (35)

where f; (q) is an arbitrary real function of g, and can be wrltten as f;=
d¢(q)/aq', where ¢(q) is a scalar function. Now let g~ P(q), ‘undergo a
unitary transformation exp[—up(q)/ #] to change the gauge for P(q), in (35)
and arrlve at the simplest form: §'* and P(q), In the coordinate representa-
tion, §* = ¢*, we have

é"‘l)={exp [;i;sv(q): g eXp[—%cp(q)]}D

~g"h=d) (362)
Pig= {exp -;; <p(q)j (Th aiqﬁa—;f,l) exp[—:;; cp(q)]}'>

=§' ;% > (36b)

Since |) is arbitrary, we obtain
A h 9
Ard Al 1 ’
= = P =—
9 =9=4qg, @=5 3 q
Thus the unitary transformation exp{—ig(q)/#] does not change the coor-
dinate operator, but only the momentum operator. Without loss of general-
ity, the operator of the canonical momentum in the {g)-system may always
be taken as the following simplest uniform form:
A hod
=—— 1=1,2,3 37
(g} i aql ( ) ( )
In this view, the canonical momentum operator in equation (2b) is
reasonable.

3.2. The Simplest Form of Operator ﬁ<q>,

Although we concluded that all momenta and the corresponding
operators in (2a), (2b) are to be canonical momenta rather than linear, from
the viewpoint of physical meaning it is required that the momenta be pure
linear instead of canonical when we compose them with other physical
quantities. [Of course, by equations (32a) and (32b) ali the physical quan-
tities containing momentum can also be expressed through the use of the
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canonical momentum.] It can be seen from this that when we compose
quantum operators corresponding to physical quantities containing momen-
tum, the linear momentum operator is much more consistent than the
canonical one.

Since the classical Poisson bracket may be composed of any two
functions of canonical variables, while the g, P in equation (32a) are
also functions of canonical variables, we have the following Poisson bracket:

{g" P >}=<9—g—,.c 9Py 9P 99" )
o dq" 8Py 99" 3Py

1 ;1
=—§58i=—=5F (38)
Ve U Ve
It can be seen from equations (19a), (19b) that the metric g, is a function
of coordinate variables only. That is, in the coordinate representation,
8w = gu- Using the transition procedure (2a), we have
k stepB Hi 1 k
[ s Piyl=—=25 (39)
@l =7 o
By a similar method, after analyzing the dimension of the commutation
bracket in equation (39), we can write the expression for P<q> as

po_h L 5 1 1 9

{q P(q)} \/"“

= — 40
() i\/ﬁaq’ 1 ‘/87 aql ( )
and ‘
” he o
P<q>=;7;5ﬁ+V<q>¢(q) (41)
where
H
0
S @2)

Vi == —
(@) @aql

is a gradient operator in the {g)-system. Since the interaction of a magnetic
field B=V X A with a charged particle is accomplished by the replacement

P—><P<q>~§A) (43)

it is clear that V,¢(q) in (41) is similar to a vector potential —(e/c)A.
Because V,,x V=0, V,,,¢(q) may be interpreted as the vector potential
of the zero magnetic field. According to the discussion used to establish
equation (37), this vector potential may also be removed by an unitary
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transformation exp[—ig(q)/ h]. Hence, the operators of linear momentum
in the (g)-system may always be taken as

== —=—==V (44a)

P=—e.—=—-V,, 44b
T8 T=T Vo (44b)
Their components are
A h 1 a 1 A
Ply=———=—="7=P (45a)
@ ey aqg' Vau @
A h o a
Pl ,=— =Py, 45b
=737 P (45b)

We see from (45a), (45b) that in any coordinate system the component
operators of momentum are of two types, which are associated with the
components of linear and canonical momenta, respectively. Only in the
{x)-system are ﬁfx> and ﬁ(x), equal. By comparing equations (32a) and
(32b) and equations (45a) and (45b), it can be shown that the relation
between the operators of linear and canonical momenta agrees with the
corresponding relation between the classical quantities.

4. HAMILTONIAN OPERATOR, REPEAL OF
THE (x)-COMPONENT

We prove now that any physical quantity that contains and is expressed
by means of P, or P{,(1,2,3) instead of P, can be transformed directly
to a corresponding correct operator in any orthogonal curvilinear coordinate
system. In particular, the classical Hamiltonian in any orthogonal (g}-
system can be transformed directly to the corresponding correct Hamiltonian
operator along step B of the process in Figure 1, i.e., we obtain

H(§, poy) = H'(4, Pioy) (46)

We may say that Figure 1 is closed.
Let the classical quantity P, - P,, undergo successively steps C and
B of Figure 1, ie.,

step C stepB A a
Py  Poy——— Py ' Py —— Py, - Py, (47)
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Since P, =P, step q here evidently is valid. Now it needs to be proved
that the operator P, - P,,,, as a result of step B, will present a correct form.
For this purpose, substituting the operator of (44a) into the right-hand side
of step B in (47), we have

rato=(7) | (G sg0) (G )]
(@t <a) i @ éqk \/a 6ql
Because the direction of e’; is variable with the point g, using equations
(27a), (27b), and (15) and

ax, 1 ax, ax® 9x”
rs_ " . =e,, kl_i_: exrgkl - (48)
8 09 0q

9q
A £\’ ,0x" 9 9x° 9
bt w

Let both sides of equation (49) act on an arbitrary ket |); we obtain

Ao B\’ W 0% a)( 5 0x° a)]>
P(q>P(t1>|>_(i> 6rs[<g aqx aqk g aq] aql
#\* 3 . 5 0x"ax"\] o)
=<—.> Bm[—k<gkg"—,- ,)]“‘z
i aq aq dq aq
_(ﬁ>"'5 [gyaxfj_(gkfa_f)]ﬂz
i/ "L° o aq" aq' ) 1 oq'
%\’ ki ,.<ax'>(axs)] %))
+i - rs N N— 50
(i) ® [g ¥ \oq"\ag’/ | ag*oq’ (0
Using equations (19a), (15), and (14), we can write the first term of equation
(50) as
K\’ 3wy ]a| (h)z[a k”]0|>
- . i 2L (= —_ 8h | =5
(i) ars[aqk(g g’g;) aql i aqk (g78) aql
(ﬁ)}(é&‘fi‘ a_l>)
i/ % aq" aqk

#Y’ __i_ma_b)
(i) %( g 99" 89" (51)

= €xs,

we get

It
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The second term of equation (50) can be written as

(o )l )
=_(?)28,s[g”82k( :Z : )}
+(-§-’)26,s[g 2 ,‘3;‘ o ( )]

7\’ [ w 1 9x" 8 (ax> a))
=0+{—) 8,| g"g" — — =1 |5 52
(i) * 854 2" \oq' ) | ad’ B2

After exchanging the symbols k = I and i = j, according as k=1 and
k#I the second term is divided into two parts. Next, using (14), we have

'h 2 o r s
(Fs[er 2252
q' 8q" \aq’
=(5) oo s (5]
8 9d oq q“
Wl ) A
i r 8q aq k= laqk
2
o(5) oot o ()], o
i o aq' k=109
#\* ax* 3 fox a))
(sl
(3) o3 (e e o () 2
h)2 [ e p0x° 8 (ax')] aly
+ _- arsz T 7 T Tk
(’ k! 88 aq' 9g' \8q"*/ li10q"
=(ﬁ)22(_._1_ 3gkk> a)
i/ ¥ \2gi 39"/ oq"

h 2 ( 1 agn) 8|)
+i{—- 52b
(i) kZI 281&n 3‘1 aqk (526)

Using equation (14), we find that only the third term of equation (50)
remains for k=1I:

(1) ool GRG0 =) e s
W) @
x \8ux 99 89

a))
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Putting equations (51), (52b), and (53) into equation (50), we obtain

PO 7\’ 1 ogu )
P<q>’P<q>|>=(7) %( yey aqkk Py

Z( 1 98 8|)) e 1 2|> )‘>

28ugn 99° 39"/ 1r1 g aq*aq’

T
g3 99"\ g 99"/ gz 99’ \ gn 8¢

Tmarle)])

(54)

\ivhereA €)= 811822833 Since the ket vector |) is arbitrary, the operator
P, - P, corresponding to P, - P.,, undergoes successively steps C and B
to give

1 A vg(
P Py= P(q)k( :

Yo
—— P, 55
Z Kk VE@3) 8k (q)k) (55)

In addition to steps C and B in Figure 1, we may also choose the
process of letting the classical quantity P, P, undergo steps A and D:

P, - P~ P, - Py =225 By, - P, (56)

Because step A here is performed in the (x)-system, it is clearly valid. Step
D is familiar to us and leads to the following operator by the use of the

rule of the compound differential:
v&»
e ( : P(q)k> (57)

The results (55) and (57) are in agreement with each other, so that the paths
in Figure 1 are closed. That is, if the classical Hamiltonian is expressed in
terms of linear momentum, the (x)-condition is then unnecessary for determ-
ing the Hamiltonian operator. The same conclusion is valid for other
classical quantities containing momentum.

For example, the operator of the angular momentum in a spherical
coordinate system can be given correctly by the use of the methods discussed
above., In fact, the radius vector in a spherical system, abbreviated as
(s)-system, may be written as r.,, = er, and the square of the arc element is

dsiy =Y gudqi=dr’+r’ do*+r’sin® 6 dp* (58)
k

D/ -y
Py Pigy=
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Hence the metric components are
gn=1, gzzzrz, g33=r2 sin® 6 (59)

By equations (29a) and (32a), the linear momentum in the (s)-system may
be written as

Piy=ealP é;)
= eg (V8 q “)
=, uF + e, ur +e, ur sin ¢
=e, P, +e,Ply+e Py, (60)

Then the angular momentum and its square in the (s)-system are,
respectively,

Ly =k X Py

=€ X (esrP(rs> + esGP?s) + es‘pP{;)

= r(esqu(Bs)_eSGPZ’;)) (61)
Liy=Ly* Ly=r (PG + PE) (62)

Both L, and L{,, have been expressed in terms of linear momentum in the
(s)-system and may directly be transformed to the corresponding operators
in the (s)-system by the use of (44a), and the kth dimensional formulas of
(55) and (59),

Ly =1 X Py

= r(eS(pP(es) _eSBP(s))

(h) ( 19 € a)

=lT)rle - T

i r 36 rsin @ Jo
h d e, 0

Sl Bl | Nt — 63
<i)(e"’66 smG&gp) (63)

. wNf 1 9 ( a) 1 az)
2= (2 9 (Gnod) 4L
“ (z) (sinoao ST50) Tsin? 0 0° (64)

By equations (27a) and (59), we can find the relations between (e, , €., €,3)
in the (x)-system and (e,,, €., €,,) in the (s)-system,

e, =e,, sin 6 cos ¢ +e,, sin § sin ¢ +e,; cos 6 (65a)
€. =€y, COS 0 COS ¢ +@&,, cos 0 sin ¢ —e,; sin § (65b)

€, = —€y; Sin ¢ +e,, COs ¢ (65¢)
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Using equation (63), we obtain

A \ . 9 o\
Liy=e. - Liy=ih (sm ¢ -t+cot dcos r,o——) (66a)
00 o

Ay A , 0 . d

Ly=e. - Lig=—ih| cos ¢ ——cot 0 sin o — (66b)
30 dp

£ =epsly = —ih— (66¢)

(x) x3%4s) 3¢ C

As we can see, in the (s)-system the operators L, L%, and L,, L%, I3,
are in agreement with those in the (x)-system; thus, the restriction of the
(x)-condition can also be removed for the operator substitution of the
angular momentum.

5. REPEAL OF SYMMETRIZATION PROCEDURE

If two classical quantities that are canonical conjugate to each other
are contained in any term of a classical equality, their order is ambiguous.
In order for such terms to be transformed to a Hermitian operator, the
symmetrization procedure seems necessary. In fact, such types of classical
equalities include the transformation expressions between linear momentum
components and canonical ones as caused by a change of coordinate systems.

Suppose that the (q')-system in (13a), (13b) is replaced by the
(x)-system; we have

g =g (x', x%, xH=4¢"(x), k=123 (67a)
x"=x"(q", 4% ¢ )=x"(q), r=1,23 (67b)

Taking the derivative of equations (67a), (67b) with respect to ¢ and the
generalized velocity ¢* or X" successively, we get
ag X 3
—? _% and a_x i (68)
X ox 8q 9q
Since the (q)-system and {x)-system are static relative to each other, the
Lagrangian of a given mechanical system is independent of the choice of
system, i.e., L(q, §) = L(x, ¥). Hence we get

_9L(q,4) _ ax” aL(x x) ax”

P .= 7 Pooyr 69a

(k= YL 3G 0% ogt (69a)
dL(x,x) 94~ aL(q, ]

P, __;_'r,)_i'r ﬂ_ﬁ_ P (69b)
X 90X aq ax
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By the definition of the components of the linear momentum, we have

ngk q P(x) (70a)

ko
8kk

aqk

k .k

Pigy=pig= 8uc 7 X
; . " ax" 1 ox’

P(x) = Uiy = pX = #,-——— k \/gT a P<q> (70b)

Equations (70a) and (70b) are the transformation expressions between
the linear momentum components. Using equation (19b), we can prove
that there is no conflict between equations (69a), (69b), and equations
(70a), (70b).

It can be proved that the form of PB will be invariable when one
coordinate system is changed into the other. Suppose F(g,p,,) and
G(q, py)) are two arbitrary scalar functions of the canonical variables (g, p);
since

F(q, p()) = F(x, px))s G(q, pg)) = G(x, p(x))
we have

aF(xs P(x)) aG(x, p(x))

i

(Fx peo), GOs peoit=(

0x ap(x)i
_9G(x, pix) 0F (x, P(x)))
ax’ IP(x)i

_ (a_qk 3F (4, o) 3Py 3G(4: P(a)
ax'  8g"  Apuyi Py

_ﬁf 9G(4, Pp)) 0Py aF(q,P(q)))
ox' 34" apeyi gy

aq ox’
T oax!t aq

={F(qs p(q)), G(q’ p(q))} (71)

In the third step we have used equation (69a).

It is easy to see that the commutator bracket itself, (1/ih)[ A, B], also
is a Hermitian operator provided each of A and B is a Hermitian operator.

Now, let us consider the situation that equation (69a) is substituted
into the corresponding operator expression without the symmetrization
procedure. Let the classical momentum P,,,; undergo successively steps C
and B of Figure 1 and represent the resulting operator in the (g)-system
as Q(q, D)), and then let the same Pi,); undergo steps A and D of Figure
1 with the resulting operator denoted as Q (4, Py))- Obviously, if the operator

i{ (q,P(q)) G(‘I:P(q))}
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lo]CA Ppy) is equal to (4, Pp), and they are Hermitian operators, then
both the symmetrization procedure and the (x)-condition are unnecessary.

Let the canonical momentum componeat P, undergo step C of
Figure 1. Taking into account equation (71), we have

step C

P = pix’, H(x, poy)} — u{x'(q), H(q, pp))} (72a)

It can be proved that the right-hand side of (72a) is equal to the right-hand
side of (69b). We have

P = p{x'(q), H(g, pip»)}

(ax"(q) 9H(q, py) 9H(4, P0)) ax"(q))
ag* P (g)k aq" 3P(q)k

ax'(q) 8H{(q, p.y))
ag” OP(gk

P(q)k (fOI' j#k, gjk'—"O)

According to (19a),

ax* oax’

7l og"

Hence we have

. o’ aq~
wy 24 29 73
g ?axs ax* (73)

g___—f (74)

and

ax'(q) ag"
Pixyi = g”‘——aqq Por=7, == Py (72b)
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We can see that the result of taking step.C in equation (72a) is in agreement
with equation (69b) given by the method of the compound differential.

Now, perform the transition procedure (2a) and let the right-hand side
of (72a) undergo step B of Figure 1:

P(X)i ,u{x (q)s H(‘I: p(q))}'gi——) —l}:{ (é)a ﬁ(é’ ﬁ(q»} (75}

By equation (55), the Hamiltonian operator in the (g)-system is

H(%P(q))—i‘ \/1——13 (\/—gk(_3 P(q)i>+ (g (76)

Choosing the coordinate representation [X'(g), U(q)]zO, substituting
equation (76) into the right-hand side of (75), and letting it act on an
arbitrary ket vector, we get

Borairay s a
5 [F@, H(, P
=L{xi(q)~l—f’ (Ve gPigy)
2ih /_g(B) (q)k 3) (g

1 A A .
‘_‘\/?— Py (Vg gklp(qn)x‘(‘ﬁ} l >

1
T (@? : —)x<q>}|>
_Iny 1 ;o)
‘2{"<‘”@a (J—(g_g q)
I R w 3%'(q) klaxi(‘])_5_|>_
[\/Z'(Taq"( Eo & g )]Dg 3q" oq"

w 9% (q) ‘(9) 8|> X d ( k;?ﬁ)}
~8 g~ aq ()\/_(3-8q @gq

The summation for the first and fifth terms is equal to zero. Exchanging &
and [ in the third term, we obtain

w 9x'(q) 9

Bomisan Ara a h
£ ppi H / -
5 [£1(@), H(G, )b 2i{2g 4t o
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Since |) is arbitrary, we have

ki 9% (Q)i
aq" oq'

1 4 klax (‘I) }

The second term in equation (78) is a scalar function x'(g) acted on by the
Laplacian in the (q)-system. Since V(,,=V?,,, while V{,,x’ =0, the second
term of (78) is equal to zero. Putting equation (74) into the first term of the
right-hand side of equation (78), we obtain

L@, B Pl =5, { g

£12(@), A(G ha)]= sz (79)

Because £1(§) and H(4, D)) are Hermitian operators, both sides of (79)
are also Hermitian operators. On the other hand, let the canonical momen-
tum component P, undergo step A of Figure 1 and use equation (37);
then we have

step A

P(x)t ="

h
Py — <
) P

3
ponc (80)

With the help of the rule of compound differentiation, let the right-hand
side of equation (80) undergo step D of Figure 1 and use equation (37);
then we obtain

step D h E)q d aq A

d
P.;,=- —————>—'——=—.P 81a
(x) ox’ k (@)k ( )

5
i
The operator of the right side here agrees with that of equation (79). This
means that Figure 1 is closed.
Let (8x'/3q’) left-multiply both sides of equation (81a) and sum over
the index i; then we have

ax' A ax' 9g"

— Poyi=—7—5 - Py =P 81b
ag' " O g7 ox’ (k= 1 (81b)

Equations (81a) and (81b) are homologues of equations (69a) and
(69b), respectively.

We have seen from the discussion that not only is the transformation
expression a Hermitian expression, but also both the restrictions of the
{x)-condition and the symmetrization procedure have been removed.



Quantization in Curvilinear Coordinates 931

The transformation expression between linear momentum components
can be derived by the use of (45). From equation (81b), we can write

i i

Ve Py =P =% Proyi= ‘SU%P{)O
or
p Zcq)= \/51‘ a_x; A{X)
8k 09
Inserting equation (19b) in the right-hand side of the above equation and
using equation (14), we get

A 6," axi aqr Gqs A qu A
ot (e () () o

(@ Vaw \3¢" g ax axt) @ Sk ax 1@ (83a)
Using equation (81a), we obtain

Bi,=b
(x> ™ L (x)i

(82)

_%" 5
ax’ (q)k

aqk n
= 8V Gk Py P£q>

aq" . 9x" ax’ 4,
=8V Em —— gt — =P
1V 8kk axt g aqr Gqs (g

ax'
s

= Bklakr(gkkgrsgrs)l/z aq Péq)

= —= P (83b)

Equations (83a) and (83b) are homologues of equations (70a) and (70b),
respectively.

In addition to the above discussions, we must inquire how, in an
arbitrary curvilinear coordinate system, the general expression that includes
the classical momentum can go over into 2 Hermitian expression of corre-
sponding operators, in terms of the excluded (x)-condition and symmetriz-
ation procedure.
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For example, suppose that an equality which includes the linear
momentum components is

eqk@?(q)Péq)= exr(b;(x)Pf)ﬁ (84)

where ¢£(g) and ¢5(x) are arbitrary functions of g and x, respectively. Is
it necessary that we inquire into the operator expression corresponding to
the above equality?

Evidently, for equation (84) to have the necessary physical meaning,
it must not be in conflict with the following equality:

e;Plo = ex Pl (85)
Using the e,; dot product of equation (84), we obtain
e,;* e (q)Plyy= H(q) Plgy = €y;* €uthi(x) Py
or

Péq) =§ (eqj ‘ey) :I;;E:; P<sx> (86)

Using the e, dot product of equation (85), we obtain

e5" e4;Plg=(eg " ex) Py,
or
] r
P,= (eql : exr)P(x) (87)

Since equation (84) must be consistent with equation (85), we will have
to require that equations (86) and (87) are in direct proportion or simply
equal to each other, i.e.,

Vi)
Jj {x)

¢i(q)

The different components of momentum are independent of each other; we

have to set j=1, r=s, and

(eql * exr)sz) = Z (eqjex’)
J

i@ =y¢(x)=C (88)

where C is an arbitrary real constant. It is clear that the problem of replacing
equation (86) by a corresponding operator expressiun returns to the same
thesis of equations (70a) and (70b). With similar reasoning, other equalities
containing the linear or canonical momentum must not conflict with
equations (69a) and (69b), and equations (70a) and (70b), in order to keep
the necessary physical meaning. Therefore, it is unnecessary to discuss the
requirement of the (x)-condition and the symmetrization procedure.
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6. CONCLUSION

First, since both the classical Poisson bracket and the quantum commu-
tation bracket have completely similar algebraic properties, the most
appropriate transition program may be based on the Poisson bracket.
Second, in an arbitrary orthogonal coordinate system, the canonical momen-
tum operator is not equal to the corresponding linear momentum operator.
As the linear momentum is much more appropriate than the canonical one,
all classical quantities containing momentum must be expressed in terms
of the linear momentum instead of the canonical one before making the
operator substitution. Third, from the results that equations (32a) and (32b)
correspond to equations (45a) and (45b), equations (69a) and (69b) to
equations (81a) and (81b), and equations (70a) and (70b) to equations
(83a) and (83b), etc., the correspondence principle is valid and both the
(x)-condition and the symmetrization procedure can be removed.

REFERENCES

Bohm, D. (1951). Quantum Theory, p. 185.

Dirac, P. A. M. (1975). General Theory of Relativity, Wiley, New York.

Domingos, J. M., and Caldeira, M. H. (1984). Foundations of Physics, 14, 607.

Leech, J. W. (1958). Classical Mechanics, Methuen, London, p. 81.

Merzbacher, E. (1970). Quantum Mechanics, 2nd ed., New York, Chapter 15.

Pauli, W. (1933). Wellenmechanik, in Handbuch der Physik, Vol. 1, p. 24.

Podolsky, V. (1928). Physical Review, 32, 812.

Schiff, L. L. (1968). Quantum Mechanics, 3rd ed., McGraw-Hill, New York, p. 176.

Ting Hsang, Lee, Operator substitution and G-type system of coordinates, unpublished.



